
Some 
computational 
Issues in Nash 
Equilibria and the 
Routing Game 



1. Finding (efficiently) a mixed/pure (if any) NE 
2. Establishing the quality of a NE, as compared to a 

cooperative system, namely a system in which agents 
can collaborate (recall the Prisoner’s Dilemma) 

3. In a repeated game, establishing whether and in how 
many steps the system will eventually converge to a 
NE (recall the Battle of the Sexes) 

4. Verifying that a strategy profile is a NE, 
approximating a NE, NE in resource (e.g., time, space, 
message size) constrained settings, breaking a NE by 
colluding, etc...  

Fundamental computational issues 
concerned with NE 

(interested in a Thesis, or even in a PhD?) 



Finding a NE in mixed strategies 

 How do we select the correct probability distribution? It looks like a 
problem in the continuous… 

…but it’s not, actually! It can be shown that such a distribution can be 
found by selecting for each player a best possible subset of pure 
strategies (so-called best support), over which the probability 
distribution can actually be found by solving a system of algebraic 
equations (which are in general exponential in the number of players) 

 In the practice, the problem can be solved by a simplex-like 
technique called the Lemke–Howson algorithm, which however is 
exponential in the worst case! 

Remark: Interestingly, 2-player zero-sum games can instead be 
solved in polynomial time! 

 



Is finding a NE NP-hard? 

 In pure strategies, yes, for many games of interest 
 What about mixed strategies? W.l.o.g., we restrict ourselves to 2-

player games, let us call it 2-NASH, and we wonder whether 2-NASH 
(which may be thought in normal form as follows) is NP-hard 

   s2,1   s2,2    …    s2,m 

            ____________________ 
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 _____________________________  

 s1,2 

                  _____________________________ 
                   . 
                   . 
 

            ____________________ 

 s1,n 

                 ______________________________ 



Is finding a NE NP-hard? (2) 

 Recall: a decision problem P  is in NP (resp., in coNP) if all its "yes"-
instances (resp., “no”-instances) can be decided in polynomial time by a 
Non-Deterministic Turing Machine (NDTM) [Alternative definition 
for NP (resp., coNP): set of problems for which a "yes"-instances 
(resp., a “no”-instances) can be verified in polynomial time by a DTM]  

 Recall also: a problem P  (not necessarily a decision one) is NP-hard if 
one can reduce in polynomial time any decision problem P’ in NP to it 
(this means, P’ can be decided in polynomial time on a NDTM by 
transforming it to P, in such a way that “yes”-instances of P’ maps to 
instances of P  satisfying an easy-to-check predicate, and vice versa) 

 It turns out that NP-hardness is then not an appropriate concept of 
complexity, since we know from Nash’s Theorem that every game is 
guaranteed to have a Nash equilibrium in mixed strategies (i.e., all the 
instances of 2-NASH are “yes”-instances), and so if 2-NASH would be 
NP-hard then this would imply that NP = coNP (very hard to believe!) 



The complexity class PPAD 

 Definition (Papadimitriou, 1994): PPAD (Polynomial Parity 
Argument – Directed case) is a subclass of TFNP (Total 
Function Nondeterministic Polynomial), where existence of a 
solution is guaranteed by a parity argument. Roughly 
speaking, PPAD contains all problems whose solution space 
can be set up as the (non-empty) set of all sinks in a suitable 
directed graph (generated by the input instance), having an 
exponential number of vertices in the size of the input, 
though. 

 Breakthrough: 2-NASH is PPAD-complete!!!                              
(Chen & Deng, FOCS’06) 

 Remark: It could very well be that PPAD=PNP, but several 
PPAD-complete problems are resisting for decades to poly-
time attacks (e.g., finding Brouwer fixed points) 

 



Finding a NE in pure strategies 

 By definition, it is easy to see that an entry (p1,…,pN) of the 
payoff matrix is a NE if and only if pi is the maximum ith 
element of the row (p1,…,pi-1, {p(s):sSi} ,pi+1,…,pN), for each 
i=1,…,N. 

 Notice that, with N players, an explicit (i.e., in normal-form) 
representation of the payoff functions is exponential in N 
 brute-force (i.e., enumerative) search for pure NE is 
then exponential in the number of players (even if it is still 
polynomial in the input size, but the normal-form 
representation needs not be a minimal-space representation 
of the input!) 

 Alternative cheaper methods are sought: for many games of 
interest, a NE can be found in poly-time w.r.t. to the number 
of players (e.g., by using the powerful potential method) 



On the quality of a NE 

 How inefficient is a NE in comparison to an idealized 
situation in which the players would collaborate selflessly 
(in other words, the distributed system become 
cooperative), with the common goal of maximizing the 
overall social welfare, i.e., a social-choice function C 
which depends on the payoff of all the players (e.g., C is 
the sum of all the payoffs)?  

 Example: in the Prisoner’s Dilemma (PD) game, the DSE 
(and NE) incurs a total of 10 years in jail for the players. 
However, if the prisoners would cooperate by not 
implicating reciprocally, then they would stay a total of 
only 2 years in jail! 



A worst-case perspective:  
the Price of Anarchy (PoA) 

 Definition (Koutsopias & Papadimitriou, 1999): Given a 
game G and a social-choice function C, let S be the set of 
all NE. If the payoff represents a cost (resp., a utility) 
for a player, let OPT be the outcome of G minimizing 
(resp., maximizing) C. Then, the Price of Anarchy (PoA) of 
G w.r.t. C is 

 

 
 Example: in the PD game, PoAPD(C)=10/2=5 
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 Internet components are made up of 
heterogeneous nodes and links, and the network 
architecture is open-based and dynamic 

 Internet users behave selfishly: they generate 
traffic, and their only goal is to download/upload 
data as fast as possible!  

 But the more a link is used, the more is slower, and 
there is no central authority “optimizing” the data 
flow… 

 So, why does Internet eventually work is such a 
jungle???  

A case study for the existence and quality  
of a NE: selfish routing on Internet 



 
Internet can be modelled by using game theory: it is a 
(congestion) game in which 

 
     players                    users 

           strategies                    paths over which users  
     can route their traffic 
Non-atomic Selfish Routing: 

• There is a large number of (selfish) users generating a 
large amount of traffic; 

• Every user controls an infinitesimal fraction of the 
traffic;  

• The traffic of a user is routed over a single path in one 
shot. 

The Internet routing game 



Mathematical model 
(multicommodity flow network) 

• A directed graph G = (V,E) and a set of N players 

• A set of commodities, i.e., source–sink pairs (si,ti), for i=1,..,k 
(each of the N≥k players is associated with a commodity) 

• Let Ni be the amount of players associated with (si,ti), for 
each i=1,..,k; then, the rate of traffic between si and ti is 

ri=Ni/N, with 0≤ ri ≤1 and i=1,…,k  ri = 1 

• A set Πi of paths in G between si and ti for each i=1,..,k, and 
the corresponding set of all paths Π=Ui=1,…,k Πi 

• Strategy for a player: a path joining its commodity 

• Strategy profile: a flow vector f specifying the rate of 
traffic fP routed on each path PΠ (notice that 0≤ fP ≤1, and 

that for every i=1,..,k we have PΠi fP =ri) 



• For each eE, the amount of flow absorbed by e w.r.t. f is 

fe=P Π : eP fP 

• For each edge e, a real-value latency function le(x):[0,1]+ 
of its absorbed flow x (this is a monotonically non-
decreasing function which expresses how e gets congested 
when a fraction 0≤x≤1 of the total flow f uses e) 

• Cost of a player: the latency of its used path P Π:  

    c(P)=eP  le(fe) 

• Cost (or average latency) of a flow f (social-choice 

function):  C(f)=PΠ fP·c(P)=PΠ fP·eP le(fe)=eE fe·le(fe) 

Observation: Notice that the game is not given in normal 
form! 

Mathematical model (2) 



Flows and NE 

Definition: A flow f* is a Nash flow if no 
player can improve its cost (i.e., the cost of its 
used path) by changing unilaterally its path. 

QUESTION: Given an instance 
(G,s=((s1,t1),…,(sk,tk)),r=(r1,…,rk),l=(le1,…, lem)) of 
the non-atomic selfish routing game, does it 
admit one or more Nash flows? And in the 
positive case, what is the PoA of the game? 



Latency is 
fixed 

Latency depends on 
the congestion (x is 
the fraction of flow 

using the edge) 

s t 

Example: Pigou’s game [1920] 

Is there any Nash flow for this game?  
YES! For instance, that in which all the flow travels on the upper edge 

 the cost of this flow is C(f) = 1·le1(1) +0·le2(0) = 1·1 +0·1 = 1 
Are there any other Nash flows?  
What is the PoA of this game? The optimal solution is the minimum of 

C(x)=x·x +(1-x)·1  C(x)=x2-x+1  C’(x)=2x-1  OPT for C’(x)=0, i.e., 
x=1/2C(OPT)=1/2·1/2+(1-1/2)·1=0.75 

 PoA(C) = 1/0.75 = 4/3 

Total amount of flow: 1 
le1(x)=x 

le2(x)=1 

NO 



Existence of a Nash flow 
 

 Theorem (Beckmann et al., 1956): If for each edge e 
the function x·le(x) is convex (i.e., its graphic lies below the 
line segment joining any two points of the graphic) and 
continuously differentiable (i.e., its derivative exists at 
each point in its domain and is continuous), then the Nash 
flow of (G,s,r,l) exists and is unique, and is equal to the 
optimal min-cost flow of the following instance:  

(G,s,r, λ(x)=[∫  l(t)dt]/x). 

 Remark: The optimal min-cost flow can be computed in 
polynomial time through convex programming methods. 

x 

0 



Flows and Price of Anarchy 

 Theorem 1: In a network with linear latency functions, 
the cost of a Nash flow is at most 4/3 times that of the 
min-cost flow  every instance of the non-atomic selfish 
routing satisfying this constraint has PoA ≤ 4/3. 
 

 Theorem 2: In a network with degree-p polynomials 
latency functions, the cost of a Nash flow is O(p/log p) 
times that of the min-cost flow. 

(Roughgarden & Tardos, JACM’02) 



A bad example for non-linear latencies 

Assume p>>1 

s t 

l(x)=xp 

l(x)=1 0 

1 1- 

 close to 0 

A Nash flow (of cost C=1·1p+0·1=1) is 
arbitrarily more expensive than the optimal 
flow (of cost C=(1-ε)·(1-ε)p+ ε·1 ≈ 0) 



Improving the PoA:  

the Braess’s paradox 

Does it help adding edges to improve the PoA? 

NO! Let’s have a look at the Braess Paradox 
(1968) 

v 

w 

l(x)=x 

s t 

1/2 

1/2 

Cost for each player (i.e., latency of 
a path) = x+1=1/2+1 = 1.5 

Cost of the flow= 2·(1.5·1/2)=1.5 

(notice this a NE and it is also an 
optimal flow) 

l(x)=x l(x)=1 

l(x)=1 



To reduce the cost of the flow, we try to add a no-
latency road between v and w. Intuitively, this should 
not worse things! 

v 

w 

x 
1 

s t 

x 1 

0 

  The Braess’s paradox (2) 



However, each user is tempted to change its route now, 
since the path s→v→w→t has less cost (indeed, x≤1)  

v 

w 

x 1 

s t 

x 1 

0 

If only a single user changes its 
route, then its cost decreases from 
1.5 to approximately 1, i.e.: 

c(s→v→w→t) = x+0+x ≈ 0.5 + 0.5 = 1   

  The Braess’s paradox (3) 

But the problem is that all the 
users will decide to change! 



 So, the cost of the flow f that now entirely uses the 
path s→v→w→t is: 

C(f) = 1·1+1·0+1·1=2>1.5 

 Even worse, this is a NE (the cost of the path 
s→v→w→t is 2, and the cost of the two paths not 
using (v,w) is also 2)! 

 The optimal min-cost flow is equal to that we had 
before adding the new road and so, the PoA is 

3

4


1.5

2
PoA

  The Braess’s paradox (4) 

Notice it is 4/3, as in the 
Pigou’s example, and it is equal 
to the upper bound we gave 
for linear latency functions 



Convergence towards a NE 
(in pure strategies games) 

 Ok, we know that selfish routing is not so bad 
at its NE, but are we really sure this point of 
equilibrium will be eventually reached? 

 Convergence Time: number of moves made by 
the players to reach a NE from an initial 
arbitrary state 

 Question: Is the convergence time 
(polynomially) bounded in the number of 
players? 

 



Convergence towards the Nash flow 

 Positive result: If players obey to a best response 
dynamics (i.e., each player at each step greedily selects a 
strategy which maximizes its personal utility) then the 
non-atomic selfish routing game will converge to a NE. 
Moreover, for many instances (i.e., for prominent graph 
topologies and/or commodity specifications), the 
convergence time is polynomial. 

 Negative result: However, there exist instances of the 
non-atomic selfish routing game for which the 
convergence time is exponential (under some mild 
assumptions). 


